首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85575篇
  免费   4100篇
  国内免费   2520篇
电工技术   5827篇
技术理论   25篇
综合类   8367篇
化学工业   5010篇
金属工艺   1190篇
机械仪表   3417篇
建筑科学   14947篇
矿业工程   3452篇
能源动力   3807篇
轻工业   2618篇
水利工程   7194篇
石油天然气   2812篇
武器工业   314篇
无线电   5950篇
一般工业技术   4378篇
冶金工业   5894篇
原子能技术   703篇
自动化技术   16290篇
  2024年   69篇
  2023年   650篇
  2022年   1331篇
  2021年   1709篇
  2020年   1792篇
  2019年   1326篇
  2018年   1251篇
  2017年   1653篇
  2016年   1986篇
  2015年   2255篇
  2014年   6468篇
  2013年   5483篇
  2012年   5812篇
  2011年   6562篇
  2010年   5035篇
  2009年   5514篇
  2008年   5363篇
  2007年   6447篇
  2006年   5586篇
  2005年   4826篇
  2004年   4146篇
  2003年   3710篇
  2002年   2947篇
  2001年   2188篇
  2000年   1750篇
  1999年   1401篇
  1998年   983篇
  1997年   757篇
  1996年   616篇
  1995年   549篇
  1994年   406篇
  1993年   281篇
  1992年   228篇
  1991年   164篇
  1990年   106篇
  1989年   139篇
  1988年   100篇
  1987年   72篇
  1986年   91篇
  1985年   94篇
  1984年   85篇
  1983年   88篇
  1982年   36篇
  1981年   22篇
  1980年   16篇
  1979年   15篇
  1977年   15篇
  1975年   6篇
  1961年   7篇
  1959年   9篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Waste-to-fuel coupled with carbon capture and storage is forecasted to be an effective way to mitigate the greenhouse gas emissions, reduce the waste sent to landfill and, simultaneously, reduce the dependence of fossil fuels. This study evaluated the techno-economic feasibility of sorption enhanced gasification, which involves in-situ CO2 capture, and benchmarked it with the conventional steam gasification of municipal solid waste for H2 production. The impact of a gate fee and tax levied on the fossil CO2 emissions in economic feasibility was assessed. The results showed that the hydrogen production was enhanced in sorption enhanced gasification, that achieved an optimum H2 production efficiency of 48.7% (T = 650 °C and SBR = 1.8). This was 1.0% points higher than that of the conventional steam gasification (T = 900 °C and SBR = 1.2). However, the total efficiency, which accounts for H2 production and net power output, for sorption enhanced gasification was estimated to be 49.3% (T = 650 °C and SBR = 1.8). This was 4.4% points lower than the figure estimated for the conventional gasification (T = 900 °C and SBR = 1.2). The economic performance assessment showed that the sorption enhanced gasification will result in a significantly higher levelised cost of hydrogen (5.0 €/kg) compared to that estimated for conventional steam gasification (2.7 €/kg). The levelised cost of hydrogen can be reduced to 4.5 €/kg on an introduction of the gate fee of 40.0 €/tMSW. The cost of CO2 avoided was estimated to be 114.9 €/tCO2 (no gate fee and tax levied). However, this value can be reduced to 90.1 €/tCO2 with the introduction of an emission allowance price of 39.6 €/tCO2. Despite better environmental performance, the capital cost of sorption enhanced gasification needs to be reduced for this technology to become competitive with mature gasification technologies.  相似文献   
2.
如何在互联网时代打造一个信息化的管理模式,已经成为广大学校图书管理发展过程中亟待处理的问题。文章就互联网时代下的高职图书管理信息化建设进行了详细探讨,以期能够给广大同仁提供一些借鉴参考,共同为图书管理工作的现代化改革和发展贡献力量。  相似文献   
3.
Electrocatalytic water splitting is an important method to produce green and renewable hydrogen (H2). One of the hindrances for wide applications of electrocatalysis in H2 production is the lack of freshwater resources. Comparatively, seawater splitting has become an effective approach for large-scale H2 production due to its abundant reserves. However, the increased complexity of seawater content emerged more problems in electrocatalytic seawater splitting. Recently, various strategies have been reported on improving the performance of electrocatalysts applied in seawater. Herein, this review firstly analyzed the mechanisms and challenges of electrocatalytic seawater splitting to evolve H2, and summarized the recent progress on H2 production in electrocatalytic seawater splitting. Furthermore, suggestions for future work have been provided for guidance.  相似文献   
4.
‘Renewable energy is an essential part of our strategy of decarbonization, decentralization, as well as digitalization of energy.’ – Isabelle Kocher.Current climate, health and economic condition of our globe demands the use of renewable energy and the development of novel materials for the efficient generation, storage and transportation of renewable energy. Hydrogen has been recognised as one of the most prominent carriers and green energy source with challenging storage, enabling decarbonization. Photocatalytic H2 (green hydrogen) production processes are targeting the intensification of separated solar energy harvesting, storage and electrolysis, conventionally yielding O2/H2. While catalysis is being investigated extensively, little is done on bridging the gap, related to reactor unit design, optimisation and scaling, be it that of material or of operation. Herein, metals, oxides, perovskites, nitrides, carbides, sulphides, phosphides, 2D structures and heterojunctions are compared in terms of parameters, allowing for efficiency, thermodynamics or kinetics structure–activity relationships, such as the solar-to-hydrogen (STH). Moreover, prominent pilot systems are presented summarily.  相似文献   
5.
Proper management of the liquid water and heat produced in proton exchange membrane (PEM) fuel cells remains crucial to increase both its performance and durability. In this study, a two-phase flow and multicomponent model, called two-fluid model, is developed in the commercial COMSOL Multiphysics® software to investigate the liquid water heterogeneities in large area PEM fuel cells, considering the real flow fields in the bipolar plate. A macroscopic pseudo-3D multi-layers approach has been chosen and generalized Darcy's relation is used both in the membrane-electrode assembly (MEA) and in the channel. The model considers two-phase flow and gas convection and diffusion coupled with electrochemistry and water transport through the membrane. The numerical results are compared to one-fluid model results and liquid water measurements obtained by neutron imaging for several operating conditions. Finally, according to the good agreement between the two-fluid and experimentation results, the numerical water distribution is examined in each component of the cell, exhibiting very heterogeneous water thickness over the cell surface.  相似文献   
6.
Manufacturing companies not only strive to deliver flawless products but also monitor product failures in the field to identify potential quality issues. When product failures occur, quality engineers must identify the root cause to improve any affected product and process. This root-cause analysis can be supported by feature selection methods that identify relevant product attributes, such as manufacturing dates with an increased number of product failures. In this paper, we present different methods for feature selection and evaluate their ability to identify relevant product attributes in a root-cause analysis. First, we compile a list of feature selection methods. Then, we summarize the properties of product attributes in warranty case data and discuss these properties regarding the challenges they pose for machine learning algorithms. Next, we simulate datasets of warranty cases, which emulate these product properties. Finally, we compare the feature selection methods based on these simulated datasets. In the end, the univariate filter information gain is determined to be a suitable method for a wide range of applications. The comparison based on simulated data provides a more general result than other publications, which only focus on a single use case. Due to the generic nature of the simulated datasets, the results can be applied to various root-cause analysis processes in different quality management applications and provide a guideline for readers who wish to explore machine learning methods for their analysis of quality data.  相似文献   
7.
Relatively low efficiency is the biggest obstacle to the popularization of water electrolysis, which is a particularly feasible way to produce super-pure hydrogen. Imposing a magnetic field can increase the hydrogen production efficiency of water electrolysis. However, the enhancement's detailed mechanism still lacks an insightful understanding of the bubbles' micro vicinity. Our recent work aims to understand why the micro-magnetohydrodynamic (MHD) convection hinders single bubbles' detachment on the microelectrode. A water electrolysis experiment by microelectrode is performed under an electrode-normal magnetic field, and dynamic analysis of the single bubble growing on microelectrodes is performed. The variation of bubble diameter with time in the presence or absence of the magnetic field was measured, and the forces acting on the bubble were quantified. The result shows that the micro-MHD convection, induced by Lorentz force, can give rise to a downward hydrodynamic pressure force that will not appear in large-scale MHD convection. This force can be of the same magnitude as the surface tension, so it dramatically hinders bubbles' detachment. Besides, the Kelvin force provides a new potential way for further improving the efficiency of water electrolysis.  相似文献   
8.
In recent years, artificial intelligence (AI) is being increasingly utilised in disaster management activities. The public is engaged with AI in various ways in these activities. For instance, crowdsourcing applications developed for disaster management to handle the tasks of collecting data through social media platforms, and increasing disaster awareness through serious gaming applications. Nonetheless, there are limited empirical investigations and understanding on public perceptions concerning AI for disaster management. Bridging this knowledge gap is the justification for this paper. The methodological approach adopted involved: Initially, collecting data through an online survey from residents (n = 605) of three major Australian cities; Then, analysis of the data using statistical modelling. The analysis results revealed that: (a) Younger generations have a greater appreciation of opportunities created by AI-driven applications for disaster management; (b) People with tertiary education have a greater understanding of the benefits of AI in managing the pre- and post-disaster phases, and; (c) Public sector administrative and safety workers, who play a vital role in managing disasters, place a greater value on the contributions by AI in disaster management. The study advocates relevant authorities to consider public perceptions in their efforts in integrating AI in disaster management.  相似文献   
9.
Utilization of 3D nanostructured Pt cathodes could obviously improve performances of proton exchange membrane fuel cells (PEMFCs) owing to the reduced tortuosity and the bi-continuous nanoporous structure. However, these cathodes usually suffer from the flooding problem ascribed to the ionomer-free and nanoscale pores which are more susceptible to water condensation. In this paper, ultra-thin nanoporous metal films (100 nm) were utilized to construct PEMFC cathodes and independent transport channels were designed separately for water and gas aiming at the flooding problem. Nanoporous gold (NPG) film was used as the model support for loading Pt nanoparticles owing to its controllable and stable structure. After optimizing the polytetrafluoroethylene (PTFE) content and carbon loading in the gas diffusion layer (GDL), plasma treatment under O2 atmosphere was used to pattern the GDL with independent water transport channels. The obtained liquid permeation coefficients and oxygen gains demonstrated the obviously improved water and O2 transport. By using a home-made optimized GDL and a nanoporous film cathode with pore size ~60 nm, the flooding problem could be facilely solved. With a Pt loading of ~16 μg cm?2, this 3D nanostructured cathode exhibits a PEMFC performance of ~957 mW cm?2 at 80 °C. The Pt power efficiency is about 4 times higher than that of the commercial Pt/C cathode (50 μg cm?2, 756 mW cm?2). Obviously, this study provides a simple but effective methodology to solve the water flooding problem in the ultra-thin nanoporous film cathodes which is applicable for other types of 3D nanostructured PEMFC cathodes.  相似文献   
10.
ABSTRACT

In this study, electrocoagulation (EC) was used to determine the optimum conditions on the basis of maximum chemical oxygen demand (COD) and color removal. At the optimum conditions chlorophenols (CPs), biological oxygen demand and total organic carbon (TOC) were determined. The biodegradability of wastewater was increased significantly with 63% COD, 98% color, 61% TOC and overall 65.51% reductions in CPs. Further, the electro-coagulated sludge was characterized by using different analytical techniques to assist the physicochemical and elemental phases, to find-out better management option, reusability for plant growth and safe disposal. Additionally, aluminum content (70.62%) was successfully recovered from sludge.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号